資料更新時間:2024/9/16 上午 10:04:55
學系特色
東吳大學獨步亞洲首創『巨量資料管理學院』,並設立資料科學系,效法美國知名學府,不僅著重知識的傳授更強化專業領域的養成,課程規劃彈性而因應時代所需。著重於資料科學跨領域應用,課程設計結合機器學習、人工智慧、資料分析、資料視覺、數學、統計、管理、金融、行銷、社會、心理、商業應用等跨領域應用,強調專題實作與企業實習,同時引進業師群實務授課,致力培育高應變力的跨領域數據人才。
學科意涵
在資料科學領域裡工作的人需要具備兩方面素質:一是概念性,主要是模型理解與運用;二是實踐性,主要是處理實際資料的能力。培養這樣的人才,需要數學、統計與計算機科學等學科之間的密切合作,同時也更需要產業界的投入與協助,現在遍佈於日常生活中的影音推薦系統、Siri 語意分析系統等都是應用。
學習方法
問題導向式學習(Problem-Based Learning, PBL):透過問題情境誘發學生探索目標、設定方法並善用資訊科技(如:Python等工具運用)以及網路資源(如公開資料與程式碼)來提出解決方案,以培養學生資料分析基礎能力,並提升學生自我學習與解決問題的能力。
專案導向式學習:專案即是現實世界的真實案例,使學生進入有意義的問題情景中,通過自主探究和團隊合作來解決問題,結合業界資源於課堂中導入 Capstone 專案,由業界專家出題,老師引導學生解題,在過程中培養資料分析能力、問題解決能力以及多元之資料分析視野。
主題式學習:跨學科知識範疇,由不同領域業界老師扮演著顧問的角色,並透過同儕合作與校外實習,探索真實世界的各種現象,思考因應社會挑戰的可行辦法,並發掘自己的潛能。例如:研究「社群憂鬱現象」的主題,就會涉及心理、社工、自然語言處理、醫學、社群、科技等多個學科,帶領學生進行跨學科的專題實作。
高中階段可以準備的學習方法或方向
高中端可以利用網路教學或是線上課程來進行預先學習,或是經由雜誌、媒體等方式多吸收來自各種不同面向的科技趨勢與走向,讓自我對於數位化、人工智慧的應用場域更加了解。
與相關科系之異同
資料科學系常與資訊工程、資訊管理比較。資訊工程系的學生多從事研發設計與硬體相關或是新演算法的軟體工作;資訊管理系則是與管理相關的運用,較著重商業應用相關領域,資料科學系則較重視在跨領域中的問題解決,專注於如何運用現有的工具以及計算方法來進行分析,並協助企業進行結果判讀進而解決問題。因此,資料科學課程包含資工的基礎程式設計訓練,再加入商業行銷應用、金融科技與社會科學等領域的分析應用。
生涯發展容易誤解之處
在這個人人都提「人工智慧與機器學習」的時代,具備有分析資料的能力,以及跨領域數據應用能力的人是極度缺乏的。資料科學乃是養成兼具資訊程式能力、資料分析與跨領域溝通能力的人才,不僅可以跟資訊工程師溝通無礙,對管理層面也能夠了解需求進而發現問題,研擬解決問題的流程,使得企業內部的資訊以及產業思維順利銜接。
學習方法容易誤解之處
資工資管是培育IT人才,而資料科學是培育DT(Data Technology)人才。IT重視流程,反觀DT重視結果。在課程設計上,我們著重於在跨領域中問題解決,更專注於如何運用資訊科技工具以及程式設計提出解決方案並對結果進行判讀,協助企業解決問題與決策支援。
補充提醒與說明
程式語言與資訊能力往往只是職場必備的條件,因此一開始我們著重培養資訊技術能力為主要目標。透過大一大二年級扎實的基礎工訓練後,大三大四時提供學生多樣性的領域發展如商業應用、金融科技、社會科學等課程培育,讓學生能從生硬的理論基礎與方法學中,懂得如何利用所學在實際接觸到企業個案,並了解不同領域的業者所面臨的困境,參與可行的解決方案,提升職場競爭力,並從中了解自我的興趣以及未來職場的方向。
核心課程地圖
-
大一必修
- 微積分
- 計算機概論
- 程式設計(一)(二)
- 巨量資料概論
- 資料庫導論
- 線性代數
- 網頁程式設計
-
大二必修
- 資料分析軟體
- 資料工程
- 資料產品開發實務
- 機率與統計
- 資料視覺化分析
-
大三必修
- 資料探勘導論
- 機器學習導論
-
大四必修
- 人工智慧導論
- 專題實作
專業選修課程
-
資料分析專精類課程
- 資料結構與演算法/ 互動科技/ 電子化企業/ 擴增實境行動應用整合開發/ 雲端運算服務/ 巨量資料處理架構與技術/ 資訊安全與倫理/ 巨量資料分析應用/ 視覺化解析/ 多變量分析導論/ 資料檢索導論/ 文字探勘導論/ 企業實習
-
商業應用學群課程
- 區塊鏈/ 大數據行銷/ 社群媒體行銷/ 電子化企業/ 智慧聯網應用/ 使用者經驗之洞察分析/ 智慧城市創新應用/ 行為資料科學/ 廣告投放分析
特色課程
多元學習場域,實作課程
依據不同領域建立實驗室,提供學生多元學習場域並鍛鍊其基礎能力,更透過實際專案的執行,引動學生學習動機與興趣。特別是在「程式能力」的培育方面,課程設計含括:Python, Julia, R, SAS, Java, PHP, HTML5, SQL
業界專家帶路,實戰力課程
在課程中導入盛行於美國著名學府的Capstone Project,幫助學生統整與深化所學,讓學習更紮實,同時引導學生1.深入瞭解數據並協作解決數據問題,2.由數據找洞察,幫助企業做得更好,3.從這些洞察中找到正確的方向去建立行動以產產生資料價值,課程含括:人工智慧、機器學習、社群網絡等
跨領域人才培育課程
為縮短學用落差,針對資料科學廣泛應用的三大專業領域設計:商業應用、金融科技與社會科學學群選修課程,學生可以選擇一項專業選修學群課程或是探索不同領域專興趣;再配合產業實習專題,以實務與業界選才標準孕育新生代資料科學應用人才。
適合從事工作
-
行銷企劃部門主管
-
確認產品需求、競爭者和潛在客戶,研訂行銷策略及規劃行銷活動等,並負責部門協調、指導、管制及考核等的管理工作。
-
-
其他資訊專業人員
-
從事各方面的數據分析資訊專業工作。
-
-
金融科技
-
金融商品數據分析。
-
系友生涯發展
李昱萱
巨資讓我最有感的是實作經驗豐富以及學院老師的用心。在巨資和老師有一起執行專案,能將所學應用到專案中,亦從中發現實作上的困難並且學習如何排除問題,老師對於學生的問題都是很樂於分享與討論。在選擇未來職場的方面盡可能不要限縮自己的選擇,其實每個工作領域都需要數據分析,重點是多培養自己多元的技能。
現在的產業需要的是多元的人才,因此在大學畢業後選擇了巨資研究所。現在數據分析是人人都必須要有的思維,不管你在哪個單位哪部門都需要這項技能。而巨資培養了我程式語言的邏輯思考以及尋找資源解決困難的能力,並且在實習以及專案的經驗中與社會接軌。現為資誠會計事務所程式開發工程師。
王奕淳
原本考上其他學校統研所,但考慮程式語言重要性而選擇巨資。在這裡可以為程式語言打下很好的基礎,巨資每個教授都身懷絕技,在各自領域中都是佼佼者,能接觸到各種產業不同的大數據分析應用,進而讓自己能學習到產業都如何使用數據去做分析的。
現任職於永豐銀行數位分析部。
Willy Lin
原本是幾乎沒有程式基礎的文科人,進入資科學習相關知識與工具應用,也透過實習培養實務經驗,讓我能順利往資料分析領域發展。在這個資料至上的時代,有資料就是佔盡優勢,但是若是不會對資料做適當的處理及分析那就太可惜了。巨資透過專業的課程以及實習的機會讓我在過程中收穫極多,讓我可以順利的與社會接軌。
現任職於運達航運股份有限公司。
多元能力
敏銳創造:能覺察特定事件與觀念、理論之間的差異,且能對事物進行拆解、組合、重新詮釋,呈現新穎之處。
性格特質
變通開創:常常對多種事物,表達熱情興趣,對於既有事物,進行拆解、重組,給予新的理解與觀點,並且喜愛創造出令人意想不到的新事物。
圖表來源為該校系之重視百分比,加總為100%;百分比越高,代表越重視。
- 熱門比較學系