ColleGo! 大學選才與高中育才輔助系統
靜宜大學
資料科學暨大數據分析與應用學系 加入比較清單

資訊學群 數理化學群 數據統計學類



    資料更新時間:2022/11/14 上午 06:46:11

學系特色

【培育大數據與人工智慧人才】
1. 三面向訓練: 以"數理涵養"為根基,輔以 "大數據/人工智慧資訊技能" 訓練,並 "應用在各實務領域" (金融科技、智慧醫療、工業製造、物聯網等)。
2. 開設分流學程(群),使學生適性發展:「資料科學實務」、「人工智慧與深度學習」、「工業4.0」、「科學計算」、「金融科技」。
3. 104 銀行 十大熱門職缺本系佔 7 種(如DevOps).


學科意涵

本系培育資料科學(大數據)與人工智慧人才。資料科學(大數據)乃是進行資料洞察分析並能建立模型預測各種現象;而人工智慧主要是以深度學習以及相關機器學習方法進行各種的應用。相關應用:無人駕駛、金融科技FinTech、企業營運/客戶洞察分析、智慧醫療、工業智慧製造、物聯網…等。


學習方法



高中階段可以準備的學習方法或方向

1. 目前有許多的線上課程或專門的實體上課研修機構可以自我學習, 從初階到進階都有, 可以進行自我學習.
2. 參與大學相關營隊, 體驗以上方法之應用.
3. 在高中的自主學習活動進行這些主題的探討.
4. 靜宜大學資料科學暨大數據分析與應用學系的學習資源:
https://sites.google.com/view/cplo-python


與相關科系之異同

與資管系/資工系異同:
1. 相同:資訊方面的訓練(例如程式語言,資料庫),人工智慧深度學習的訓練 。
2. 相異:本系在數理方面的訓練更加廣泛與扎實,資訊相關科系卻很少、較偏向技術性/操作性、彈性較小。本系所探討的資料型態是較為廣泛的(影像、文字...),人工智慧的應用領域也較為廣泛,而資訊科系往往只是應用在影像處理方面。


生涯發展容易誤解之處

本系的簡稱是 "資科系". 此名稱容易被誤讀為 "資訊系", 因此會被誤解為只是資訊領域的科系, 因此能從事的行業會被誤解. 實際上, 本系具備三面向的訓練: 數理內涵+資訊技能(AI與大數據)+實務應用, 因此能從事的行業非常寬廣(例如: 資訊, 金融, 品質管理/工程, 統計與數學專業人員).


學習方法容易誤解之處

本系發展「資料科學/大數據」與「人工智慧」領域,易被誤解為「資訊科學」。本系綜合「資訊科學」及「數理」面向,具備數理的訓練,將有扎實的基礎、遇見沒見過的情形、將能夠根據學理的依據來解決。而「資訊科學」學系或領域較偏向技術性/操作性、彈性較小、危機處理能力較差。


補充提醒與說明

1. 多種領域證照訓練,增加職場競爭力,贏得就業先機。專業證照領域: 人工智慧AI、資料科學(大數據)、資訊技能、財金保險。例如: 微軟證照: AI-900、AZ-900、AI-102、DP-100、DP-203、MCP、MTA。
2. 競賽表現優異(含全國賽).
3. 研究所升學表現優異.
4. 培育 DevOps/SRE 人才(台積電大舉招募)。
以上績效如 "下載詳細資料"連結。


學系聯絡方式

電話:資料準備中

信箱:資料準備中


核心課程地圖

  • 大一必修
    • 統計學(一)(二)
    • 微積分(一)(二)
    • 資料科學暨生涯規劃
    • 資料處理
    • R軟體應用
    • Python 軟體應用
    • App實作基礎
    • 管理學
    • 金融數學
  • 大二必修
    • 線性代數(一)(二)
    • Java程式設計(一)(二)
    • 迴歸分析
    • 機率論
    • 微積分(三)
    • 數值分析(一)(二)
    • 應用科技
    • 生產管理
    • 實驗設計
    • 品質管理
    • 資料探勘導論
    • 機器學習與類神經網路
    • 網路爬蟲
    • POWER BI
    • 深度學習導論
    • 金融商品介紹
    • 金融商品應用
  • 大三必修
    • 資料庫系統
    • 機器學習(一)
    • 大數據管理分析平台
    • 保險金融
    • 金融實務
    • 金融大數據分析
    • 多變量分析
    • 類別資料分析
    • 資料探勘
    • 網路資料擷取與文字探勘
    • 物聯網概論與證照輔導
    • 深度學習(一)(二)
    • 品質管理實務
    • 品質工程
    • 資料結構
    • 演算法
    • 資料庫管理
    • 數理統計(一)(二)
  • 大四必修
    • 專題實作(一)(二)
    • 區塊鍊應用與實作
    • AI商務應用暨數據分析
    • 時間序列分析
    • 金融科技與大數據
    • 存活分析
    • 醫學資料探勘
    • 人工智慧與物聯網應用
    • 深度學習應用
    • 智慧醫療
    • 科學計算
    • 數學模型

專業選修課程

  • 資料科學實務學程
    • 資料探勘、多變量分析、網路資料擷取與文字探勘、時間序列分析、醫學資料探勘、存活分析、類別資料分析、POWER BI、深度學習(一)、深度學習導論、R軟體應用
  • 人工智慧與深度學習學程
    • 深度學習(一)、機器學習與類神經網路、深度學習(二)、深度學習應用、智慧醫療、人工智慧與物聯網應用、物聯網概論與證照輔導、資料探勘導論、網路爬蟲、資料庫管理、App實作基礎
  • 工業4.0學程
    • 品質管理、生產管理、品質管理實務、實驗設計、品質工程、可靠度與設備預防維修、人工智慧與物聯網應用
  • 金融科技學群
    • 金融商品介紹、金融商品應用、保險金融、金融實務、金融大數據分析、區塊鍊應用與實作、AI商務應用暨數據分析、金融科技與大數據
  • 科學計算學程
    • 數值分析(一)、演算法、資料結構、資料庫管理、金融數學、數值分析(二)、Java 程式設計(二)、科學計算、應用科技、數學模型

特色課程

適合從事工作


  • SRE(DevOps) 工程師

    • (1).SRE/DevOps是104人力銀行十大熱門職缺第三名, 台積電也大舉招募SRE人才. 勞動部課程之相關師資即在本系. SRE是本系重點培育方向(2)AI/大數據在企業實際運用中, 必須結合資訊技能與整體運作流程. 藉由SRE/DevOps之技能, 才能對於企業外在環境的改變作靈活的應對.


  • 人工智慧與大數據科學家(或工程師)

    • 本系專門培養人工智慧與大數據人才: 相關工作性質如下(1).以機器學習 & 深度學習 相關技能進行數據研究 (2).AI相關技術應用導入與開發評估 (3).資料分析、清理與模型開發應用及佈署 (4).網路爬蟲及資訊系統大數據開發及維護 (5). 依需求設計與開發、測試、維護及專案管理。


  • 金融專業人員

    • 將本系所學之人工智慧(AI) 與大數據相關技能應用於金融領域. (1)
      在金融、投資相關企業中,從事有價證券與保險產品買賣,如股票、期貨、選擇權、保險等相關金融商品。(2)於銀行、證券公司、保險公司、投信公司等機構內,從事資料蒐集、分析、撰寫研究報告之工作,提供投資決策考量之工作。


  • 品管/品保工程師

    • 以本系所學之人工智慧大數據相關技能應用於品質管理與品質工程領域. (1)從事產品或服務品質標準之設定,並利用各種管理技術,維持與改進其品質之工作。(2)進行品質管制資料的收集與分析,協助推展品質管制制度,保證產品品質合乎顧客需求之工作。


  • 統計與數學專業研究人員

    • 本系具備三面向之訓練: 數理內涵+資訊技能(AI與大數據)+實務應用, 因此有能力的同學可以從事數理的基礎研究:
      (1)從事基礎數學的研究,並發展及改善數學技術及原理相關應用。
      (2)負責統計科學的研究與調查工作,並發展、改善統計方法 ,及對實際統計資料進行整合和解釋。



系友生涯發展


多元能力


數學推理:了解數學概念、公式與推導邏輯,用以解決問題。
30% Complete
30%
計算能力:能熟練地運用基礎的加減乘除運算,並快速且正確地推算與導出答案。
20% Complete
20%
抽象推理:觀察部分訊息或事物變化的趨勢,歸納出規則或意義,產出合理的答案。
20% Complete
20%
圖形推理:各種抽象的圖形或符號線索變化的推斷能力。
15% Complete
15%
科學能力:了解科學的原理原則及操作科學事務的能力。
15% Complete
15%

個人特質


堅毅性:專注投入,竭盡全力,有始有終,堅持到底,使命必達
40% Complete
40%
探究性:願意突破現狀,接受新的及未知的挑戰、情境或學習內容
35% Complete
35%
活動性:動作迅速敏捷,積極主動,容易付出行動,喜歡動態活動
25% Complete
25%

圖表來源為該校系之重視百分比,加總為100%;百分比越高,代表越重視。



展開