ColleGo! 大學選才與高中育才輔助系統 
東吳大學
資料科學系
靜宜大學
資料科學暨大數據分析與應用學系
所屬學群 資訊學群 數理化學群
數據統計學類
資訊學群 數理化學群
數據統計學類
所在校區

雙溪校區

111台北市士林區臨溪路70號

校本部

43301臺中市沙鹿區臺灣大道7段200號

學系特色

東吳大學獨步亞洲首創『巨量資料管理學院』,並設立資料科學系,效法美國知名學府,不僅著重知識的傳授更強化專業領域的養成,課程規劃彈性而因應時代所需。著重於資料科學跨領域應用,課程設計結合機器學習、人工智慧、資料分析、資料視覺、數學、統計、管理、金融、行銷、社會、心理、商業應用等跨領域應用,強調專題實作與企業實習,同時引進業師群實務授課,致力培育高應變力的跨領域數據人才。

【培育大數據與人工智慧人才】
1. 三面向訓練: 以"數理涵養"為根基,輔以 "大數據/人工智慧資訊技能" 訓練,並 "應用在各實務領域" (金融科技、智慧醫療、工業製造、物聯網等)。
2. 開設分流學程(群),使學生適性發展:「資料科學實務」、「人工智慧與深度學習」、「工業4.0」、「科學計算」、「金融科技」。
3. 104 銀行 十大熱門職缺本系佔 7 種(如DevOps).

  下載詳細資料
學科意涵

在資料科學領域裡工作的人需要具備兩方面素質:一是概念性,主要是模型理解與運用;二是實踐性,主要是處理實際資料的能力。培養這樣的人才,需要數學、統計與計算機科學等學科之間的密切合作,同時也更需要產業界的投入與協助,現在遍佈於日常生活中的影音推薦系統、Siri 語意分析系統等都是應用。

本系培育資料科學(大數據)與人工智慧人才。資料科學(大數據)乃是進行資料洞察分析並能建立模型預測各種現象;而人工智慧主要是以深度學習以及相關機器學習方法進行各種的應用。相關應用:無人駕駛、金融科技FinTech、企業營運/客戶洞察分析、智慧醫療、工業智慧製造、物聯網…等。


下載詳細資料
學習方法
高中階段可以準備的學習方法或方向

高中端可以利用網路教學或是線上課程來進行預先學習,或是經由雜誌、媒體等方式多吸收來自各種不同面向的科技趨勢與走向,讓自我對於數位化、人工智慧的應用場域更加了解。

1.目前有許多的線上課程或專門的實體上課研修機構可以自我學習,建議學生可以針對有興趣的部分利用網路教學或是線上課程來進行預先自我學習
2. 參與大學或優遊台中學相關營隊,, 體驗以上方法之應用.
3. 在高中的自主學習活動進行這些主題的探討.
4. 靜宜大學資料科學暨大數據分析與應用學系的學習資源:
https://sites.google.com/view/cplo-python

與相關科系之異同

資料科學系常與資訊工程、資訊管理比較。資訊工程系的學生多從事研發設計與硬體相關或是新演算法的軟體工作;資訊管理系則是與管理相關的運用,較著重商業應用相關領域,資料科學系則較重視在跨領域中的問題解決,專注於如何運用現有的工具以及計算方法來進行分析,並協助企業進行結果判讀進而解決問題。因此,資料科學課程包含資工的基礎程式設計訓練,再加入商業行銷應用、金融科技與社會科學等領域的分析應用。

與資管系/資工系異同:除資訊方面的訓練相同外,資工系多從事研發設計軟體與硬體工作;資管系則是著重商業應用,資科系則"AI+大數據" 缺一不可:重視數據處理分析的扎實訓練 (統計與數學訓練) 與人工智慧深度學習的訓練,運用現有工具以及計算方法進行分析,結果判讀進後解決問題。資科課程包含基礎程式設計訓練,再加入商業行銷應用、金融科科技與醫療科學等領域分析應用

生涯發展容易誤解之處

在這個人人都提「人工智慧與機器學習」的時代,具備有分析資料的能力,以及跨領域數據應用能力的人是極度缺乏的。資料科學乃是養成兼具資訊程式能力、資料分析與跨領域溝通能力的人才,不僅可以跟資訊工程師溝通無礙,對管理層面也能夠了解需求進而發現問題,研擬解決問題的流程,使得企業內部的資訊以及產業思維順利銜接。

本系的簡稱是 "資科系". 此名稱容易被誤讀為 "資訊系", 因此會被誤解為只是資訊領域的科系, 因此能從事的行業會被誤解. 實際上, 本系具備三面向的訓練: 數理內涵+資訊技能(AI與大數據)+實務應用, 因此能從事的行業非常寬廣(例如: 資訊, 金融, 品質管理/工程, 統計與數學專業人員).

學習方法容易誤解之處

資工資管是培育IT人才,而資料科學是培育DT(Data Technology)人才。IT重視流程,反觀DT重視結果。在課程設計上,我們著重於在跨領域中問題解決,更專注於如何運用資訊科技工具以及程式設計提出解決方案並對結果進行判讀,協助企業解決問題與決策支援。

本系發展「資料科學/大數據」與「人工智慧」領域,易被誤解為「資訊科學」。本系綜合「資訊科學」及「數理」面向,進行數理與各種資料大數據處理的訓練,具備扎實的基礎,面對各種實務應用問題,有更好的適應性與解決問題的能力。而「資訊科學」學系或領域較偏向技術性/操作性,適應性較差,數據處理分析能力較不足。

補充提醒與說明

程式語言與資訊能力往往只是職場必備的條件,因此一開始我們著重培養資訊技術能力為主要目標。透過大一大二年級扎實的基礎工訓練後,大三大四時提供學生多樣性的領域發展如商業應用、金融科技、社會科學等課程培育,讓學生能從生硬的理論基礎與方法學中,懂得如何利用所學在實際接觸到企業個案,並了解不同領域的業者所面臨的困境,參與可行的解決方案,提升職場競爭力,並從中了解自我的興趣以及未來職場的方向。

大一的關鍵第一年,大二、大三提供基礎數據分析、撰寫程式及解釋分析結果「做中學」的能力,輔以多種領域證照(人工智慧AI、資料科學(大數據)、資訊技能、財金保險)及競賽訓練(如金象盃競賽)及大四的校外實習或畢業專題,培育同學增加研究所升學表現及職場競爭力,贏得就業先機(如: DevOps/SRE 人才(台積電大舉招募)。
以上績效如 "下載詳細資料"連結。

下載詳細資料

東吳大學
資料科學系
靜宜大學
資料科學暨大數據分析與應用學系
核心課程地圖
  • 大一必修
    • 微積分
    • 計算機概論
    • 程式設計(一)(二)
    • 巨量資料概論
    • 資料庫導論
    • 線性代數
    • 網頁程式設計
  • 大二必修
    • 資料分析軟體
    • 資料工程
    • 資料產品開發實務
    • 機率與統計
    • 資料視覺化分析
  • 大三必修
    • 資料探勘導論
    • 機器學習導論
  • 大四必修
    • 人工智慧導論
    • 專題實作
  • 大一必修
    • 統計學(一)(二)
    • 微積分(一)(二)
    • 資料科學暨生涯規劃
    • 資料處理
    • R軟體應用
    • Python 軟體應用
    • App實作基礎
    • 管理學
    • 金融數學
  • 大二必修
    • 線性代數(一)(二)
    • Java程式設計(一)(二)
    • 迴歸分析
    • 機率論
    • 微積分(三)
    • 數值分析(一)(二)
    • 應用科技
    • 生產管理
    • 實驗設計
    • 品質管理
    • 資料探勘導論
    • 機器學習與類神經網路
    • 網路爬蟲
    • POWER BI
    • 深度學習導論
    • 金融商品介紹
    • 金融商品應用
  • 大三必修
    • 資料庫系統
    • 機器學習(一)
    • 大數據管理分析平台
    • 保險金融
    • 金融實務
    • 金融大數據分析
    • 多變量分析
    • 類別資料分析
    • 資料探勘
    • 網路資料擷取與文字探勘
    • 物聯網概論與證照輔導
    • 深度學習(一)(二)
    • 品質管理實務
    • 品質工程
    • 資料結構
    • 演算法
    • 資料庫管理
    • 數理統計(一)(二)
  • 大四必修
    • 專題實作(一)(二)
    • 區塊鍊應用與實作
    • AI商務應用暨數據分析
    • 時間序列分析
    • 金融科技與大數據
    • 存活分析
    • 醫學資料探勘
    • 人工智慧與物聯網應用
    • 深度學習應用
    • 智慧醫療
    • 科學計算
    • 數學模型
專業選修課程
  • 資料分析專精類課程
    • 資料結構與演算法/ 互動科技/ 電子化企業/ 擴增實境行動應用整合開發/ 雲端運算服務/ 巨量資料處理架構與技術/ 資訊安全與倫理/ 巨量資料分析應用/ 視覺化解析/ 多變量分析導論/ 資料檢索導論/ 文字探勘導論/ 企業實習
  • 商業應用學群課程
    • 區塊鏈/ 大數據行銷/ 社群媒體行銷/ 電子化企業/ 智慧聯網應用/ 使用者經驗之洞察分析/ 智慧城市創新應用/ 行為資料科學/ 廣告投放分析
  • 資料科學實務學程
    • 資料探勘、多變量分析、網路資料擷取與文字探勘、時間序列分析、醫學資料探勘、存活分析、類別資料分析、POWER BI、深度學習(一)、深度學習導論、R軟體應用
  • 人工智慧與深度學習學程
    • 深度學習(一)、機器學習與類神經網路、深度學習(二)、深度學習應用、智慧醫療、人工智慧與物聯網應用、物聯網概論與證照輔導、資料探勘導論、網路爬蟲、資料庫管理、App實作基礎
  • 工業4.0學群
    • 品質管理、生產管理、品質管理實務、實驗設計、品質工程、可靠度與設備預防維修、人工智慧與物聯網應用
  • 金融科技學群
    • 金融商品介紹、金融商品應用、保險金融、金融實務、金融大數據分析、區塊鍊應用與實作、AI商務應用暨數據分析、金融科技與大數據
  • 科學計算學群
    • 數值分析(一)、演算法、資料結構、資料庫管理、金融數學、數值分析(二)、Java 程式設計(二)、科學計算、應用科技、數學模型
特色課程
東吳大學
資料科學系
靜宜大學
資料科學暨大數據分析與應用學系
適合從事工作
  • 行銷企劃部門主管

    確認產品需求、競爭者和潛在客戶,研訂行銷策略及規劃行銷活動等,並負責部門協調、指導、管制及考核等的管理工作。


  • 其他資訊專業人員

    從事各方面的數據分析資訊專業工作。


  • 金融科技

    金融商品數據分析。


  • SRE(DevOps) 工程師

    (1).SRE/DevOps是104人力銀行十大熱門職缺第三名, 台積電也大舉招募SRE人才. 勞動部課程之相關師資即在本系. SRE是本系重點培育方向(2)AI/大數據在企業實際運用中, 必須結合資訊技能與整體運作流程. 藉由SRE/DevOps之技能, 才能對於企業外在環境的改變作靈活的應對.


  • 人工智慧與大數據科學家(或工程師)

    本系專門培養人工智慧與大數據人才: 相關工作性質如下(1).以機器學習 & 深度學習 相關技能進行數據研究 (2).AI相關技術應用導入與開發評估 (3).資料分析、清理與模型開發應用及佈署 (4).網路爬蟲及資訊系統大數據開發及維護 (5). 依需求設計與開發、測試、維護及專案管理。


  • 金融專業人員

    將本系所學之人工智慧(AI) 與大數據相關技能應用於金融領域. (1)
    在金融、投資相關企業中,從事有價證券與保險產品買賣,如股票、期貨、選擇權、保險等相關金融商品。(2)於銀行、證券公司、保險公司、投信公司等機構內,從事資料蒐集、分析、撰寫研究報告之工作,提供投資決策考量之工作。


  • 品管/品保工程師

    以本系所學之人工智慧大數據相關技能應用於品質管理與品質工程領域. (1)從事產品或服務品質標準之設定,並利用各種管理技術,維持與改進其品質之工作。(2)進行品質管制資料的收集與分析,協助推展品質管制制度,保證產品品質合乎顧客需求之工作。


  • 統計與數學專業研究人員

    本系具備三面向之訓練: 數理內涵+資訊技能(AI與大數據)+實務應用, 因此有能力的同學可以從事數理的基礎研究:
    (1)從事基礎數學的研究,並發展及改善數學技術及原理相關應用。
    (2)負責統計科學的研究與調查工作,並發展、改善統計方法 ,及對實際統計資料進行整合和解釋。


系友生涯
東吳大學
資料科學系
靜宜大學
資料科學暨大數據分析與應用學系

多元能力

敏銳創造:能覺察特定事件與觀念、理論之間的差異,且能對事物進行拆解、組合、重新詮釋,呈現新穎之處。
15% Complete
15%
快速知覺與總結:能從散落的資訊中,快速分辨與覺察具有意義的訊息,且能歸納出要點、關聯、架構等概念。
15% Complete
15%
問題解決:分析並預判問題的成因與後果,設想出合適的解決方法及使用的工具。
15% Complete
15%
運作分析:分析特定需求並規劃合適的運作流程,運用技術調整、組裝、設定設備,讓設備及系統正常運作。
10% Complete
10%
程式設計:了解程式語法以及邏輯架構,撰寫、修改程式,開發並設計系統。
10% Complete
10%
數理科學:能選擇適當的科學、數理知識或邏輯來思考問題,依據科學規律正確地推演出答案或排列資訊。
10% Complete
10%
記憶詮釋:能識別、儲存、喚起多項資訊、數字、知識內容,且能以多種方式組合這些訊息間的差異與關聯。
5% Complete
5%
邏輯推理:能捕捉事物運作的規律或關聯性,歸納或是推演不同事物的差異或因果關係,並得到特定理解。
5% Complete
5%
批判思考:運用不同觀點對問題進行理性分析,對問題的解決方法或結論,評估出優缺點、支持、反對的意見。
5% Complete
5%
主動學習:積極尋求新資訊用以掌握問題的前因、後果以及預期影響,並依據各環節選擇適合的學習行為。
5% Complete
5%
語文理解與表達:能透過語文理解他人想法形成特定概念,且能說明特定想法或因果關係。
5% Complete
5%
程式設計:了解程式語法以及邏輯架構,撰寫、修改程式,開發並設計系統。
30% Complete
30%
數理科學:能選擇適當的科學、數理知識或邏輯來思考問題,依據科學規律正確地推演出答案或排列資訊。
20% Complete
20%
快速知覺與總結:能從散落的資訊中,快速分辨與覺察具有意義的訊息,且能歸納出要點、關聯、架構等概念。
10% Complete
10%
邏輯推理:能捕捉事物運作的規律或關聯性,歸納或是推演不同事物的差異或因果關係,並得到特定理解。
10% Complete
10%
批判思考:運用不同觀點對問題進行理性分析,對問題的解決方法或結論,評估出優缺點、支持、反對的意見。
5% Complete
5%
主動學習:積極尋求新資訊用以掌握問題的前因、後果以及預期影響,並依據各環節選擇適合的學習行為。
5% Complete
5%
問題解決:分析並預判問題的成因與後果,設想出合適的解決方法及使用的工具。
5% Complete
5%
記憶詮釋:能識別、儲存、喚起多項資訊、數字、知識內容,且能以多種方式組合這些訊息間的差異與關聯。
5% Complete
5%
語文理解與表達:能透過語文理解他人想法形成特定概念,且能說明特定想法或因果關係。
5% Complete
5%
敏銳創造:能覺察特定事件與觀念、理論之間的差異,且能對事物進行拆解、組合、重新詮釋,呈現新穎之處。
5% Complete
5%

性格特質

變通開創:常常對多種事物,表達熱情興趣,對於既有事物,進行拆解、重組,給予新的理解與觀點,並且喜愛創造出令人意想不到的新事物。
30% Complete
30%
主動積極:常常主動提出特定見解,樂於付出活力與熱情投入特定問題、活動,引領他人的行動。
25% Complete
25%
開朗活潑:總是正向樂觀的看待事物的發展,即使事件發展不如預期,也能保持接納、能看見正向價值,常常表現自在、不膽怯。
20% Complete
20%
合作互助:總是願意優先關照、包容他人的需求,在不同意見中尋求最大的合作可能,優先尋求團體的共同價值,信任團體成員的指引。
15% Complete
15%
深思力行:常常追求事物的條理秩序,審慎確認事物的彼此關係,行事仔細考量後果。
10% Complete
10%
堅毅負責:常常長時間專注投入於特定事物,排除干擾訊息,會對所承諾的事物,會負起責任目標、執行到底,享受追求成就。
30% Complete
30%
探究冒險:常常樂於探索未知事物、能夠容忍陌生情境,樂於把困難視為一種挑戰,在探索、挑戰未知中偏好看見自己的成長。
30% Complete
30%
樂群敬業:總是表現活潑、傳遞熱情,主動參與活動,熱衷於與夥伴一同完成任務。
15% Complete
15%
自信肯定:總是相信自己能達成目標,會肯定自身的優勢、長處,面對挫敗能較好的調整情緒。
15% Complete
15%
合作互助:總是願意優先關照、包容他人的需求,在不同意見中尋求最大的合作可能,優先尋求團體的共同價值,信任團體成員的指引。
10% Complete
10%


展開